If it's not what You are looking for type in the equation solver your own equation and let us solve it.
28.5x^2-150=0
a = 28.5; b = 0; c = -150;
Δ = b2-4ac
Δ = 02-4·28.5·(-150)
Δ = 17100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17100}=\sqrt{900*19}=\sqrt{900}*\sqrt{19}=30\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{19}}{2*28.5}=\frac{0-30\sqrt{19}}{57} =-\frac{30\sqrt{19}}{57} =-\frac{10\sqrt{19}}{19} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{19}}{2*28.5}=\frac{0+30\sqrt{19}}{57} =\frac{30\sqrt{19}}{57} =\frac{10\sqrt{19}}{19} $
| -33x=-31 | | -52.6x^2+1000=0 | | 3+4x=-7x+6x | | 3x^2-55.6x^2+1000=0 | | 3(6+3v)=72 | | e=-6(-13) | | 12-3k=k+1-1 | | (3x+20)=2x=180 | | -3k+5k=k | | L(17)=168-6f | | (5y-2)=10 | | -9x+3-12x-7+22x-21=-31 | | L(d)=168-6d | | 10x+12-3=4 | | 2(-4y+3)-3y=-5 | | 8=-3c* | | 4x=3-15 | | 22-x=-2x+39 | | 4(3x-1)=12+2x-6 | | 24x+8x-28=6x-18x-54 | | x-0.15*x=30 | | 42=62/y | | y=-3(0.4)+4 | | 3-(2x-1)=5(3x+4)-x | | 3^(5x)=30 | | 2x+4(-3x+4)=12 | | 2x+4(3-2x)=x-7(x-3-9) | | 7(2x+4)=14x-6 | | 36x^2/9x=0 | | X(4x+16)=28 | | 3x-17=5x+15 | | 7x+4+(5x+2)=90 |